Chào mừng quý vị đến với website của ...
Quý vị chưa đăng nhập hoặc chưa đăng ký làm thành viên, vì vậy chưa thể tải được các tài liệu của Thư viện về máy tính của mình.
Nếu chưa đăng ký, hãy nhấn vào chữ ĐK thành viên ở phía bên trái, hoặc xem phim hướng dẫn tại đây
Nếu đã đăng ký rồi, quý vị có thể đăng nhập ở ngay phía bên trái.
Nếu chưa đăng ký, hãy nhấn vào chữ ĐK thành viên ở phía bên trái, hoặc xem phim hướng dẫn tại đây
Nếu đã đăng ký rồi, quý vị có thể đăng nhập ở ngay phía bên trái.
De TS lop 10 mon Toan_2016-2017_Ben Tre

- 0 / 0
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Trần Nguyễn Hoàng (trang riêng)
Ngày gửi: 15h:17' 20-07-2016
Dung lượng: 37.0 KB
Số lượt tải: 139
Nguồn:
Người gửi: Trần Nguyễn Hoàng (trang riêng)
Ngày gửi: 15h:17' 20-07-2016
Dung lượng: 37.0 KB
Số lượt tải: 139
Số lượt thích:
0 người
SỞ GIÁO DỤC VÀ ĐÀO TẠO
ĐỀ THI TUYỂN SINH
BẾN TRE
LỚP 10 TRUNG HỌC PHỔ THÔNG
NĂM HỌC 2016 – 2017
ĐỀ CHÍNH THỨC
Môn : TOÁN
Thời gian: 120 phút (không kể phát đề)
Câu 1. (2.0 điểm)
Không sử dụng máy tính cầm tay:
Tính ;
Giải hệ phương trình:
Câu 2. ( 2.0 điểm)
Trong mặt phẳng tọa độ Oxy cho parabol (P): y = x2 và đường thẳng (d) : y = 2x – 3
Vẽ đồ thị của (P) và (d) trên cùng mặt phẳng tọa độ;
Tìm tọa độ giao điểm của (P) và (d) bằng phép tinh.
Câu 3. ( 2.5 điểm)
Cho phương trình x2 – 2(m + 1)x + 2m = 0 (m là tham số)
Giải phương trình (1) với m = 1;
Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi giá trị của m;
Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn hệ thức
Câu 4. ( 3.5 điểm)
Cho nửa đường tròn O bán kính R và điểm M nằm ngoài đường tròn. Từ M vẽ hai tiếp tuyến MA, MB với đường tròn (A, B là hai tiếp điểm).
Chứng minh tứ giác MAOB nội tiếp trong một đường tròn;
Vẽ cát tuyến MCD không đi qua tâm O (C nằm giữa M và D). Chứng minh hệ thức MA2 = MC. MD;
Gọi H là trung điểm của dây CD. Chứng minh HM là tia phân giác của góc AHB;
Cho = 600. Tính diện tích của hình giới hạn bởi hai tiếp tuyến MA, MB và cung nhỏ AB.
HẾT
ĐỀ THI TUYỂN SINH
BẾN TRE
LỚP 10 TRUNG HỌC PHỔ THÔNG
NĂM HỌC 2016 – 2017
ĐỀ CHÍNH THỨC
Môn : TOÁN
Thời gian: 120 phút (không kể phát đề)
Câu 1. (2.0 điểm)
Không sử dụng máy tính cầm tay:
Tính ;
Giải hệ phương trình:
Câu 2. ( 2.0 điểm)
Trong mặt phẳng tọa độ Oxy cho parabol (P): y = x2 và đường thẳng (d) : y = 2x – 3
Vẽ đồ thị của (P) và (d) trên cùng mặt phẳng tọa độ;
Tìm tọa độ giao điểm của (P) và (d) bằng phép tinh.
Câu 3. ( 2.5 điểm)
Cho phương trình x2 – 2(m + 1)x + 2m = 0 (m là tham số)
Giải phương trình (1) với m = 1;
Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi giá trị của m;
Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn hệ thức
Câu 4. ( 3.5 điểm)
Cho nửa đường tròn O bán kính R và điểm M nằm ngoài đường tròn. Từ M vẽ hai tiếp tuyến MA, MB với đường tròn (A, B là hai tiếp điểm).
Chứng minh tứ giác MAOB nội tiếp trong một đường tròn;
Vẽ cát tuyến MCD không đi qua tâm O (C nằm giữa M và D). Chứng minh hệ thức MA2 = MC. MD;
Gọi H là trung điểm của dây CD. Chứng minh HM là tia phân giác của góc AHB;
Cho = 600. Tính diện tích của hình giới hạn bởi hai tiếp tuyến MA, MB và cung nhỏ AB.
HẾT
 






Các ý kiến mới nhất